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Analytical solutions to one-dimensional dissipative and discrete chaotic dynamics
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Analytical solutions to the chaotic and ergodic motion of a certain class of one-dimensional dissipative and
discrete dynamical systems are derived. This allows us to obtain exact expressions for physical properties such
as the time correlation function. We illustrate our solutions by means of a few examples for which conven-
tional numerical trajectory calculations fail to predict the correct behavior.@S1063-651X~98!01207-0#

PACS number~s!: 05.451b, 95.10.Fh
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I. INTRODUCTION

Chaotic behavior is a characteristic feature of the ov
whelming majority of deterministic nonlinear dynamical sy
tems@1#. Classical chaos manifests itself in the exponen
sensitivity of the trajectories with respect to the initial co
ditions and has nicely been understood as the very com
topological process of everlasting stretching and folding
the motion. In view of the complexity of chaotic trajectorie
it appears hard to imagine that chaotic motion could be
scribed by means of closed analytical formulas. To o
knowledge there exists only one exception, i.e., the dyna
cal law, which allows the representation of its chaotic traj
tories for arbitrarily long times in a closed analytical form
The solutions of the logistic map in the ergodic chaotic lim
are given by the celebrated Pincherle´ relation@2#. In contrast
to our lack of knowledge concerning exact expressions
chaotic motion there exists a well-founded and justified
terest in obtaining solutions to ergodic and chaotic behav

On the one hand it is clear that the frequently used
merical solutions of chaotic dynamical systems do not yi
one and the same trajectory for long time scales@3#. Never-
theless due to the shadowing argument statistical quant
of chaotic ergodic systems with and without external no
can in many cases be approximately obtained through a
merical investigation@4,5#. However, there are exception
such as the case when a Lyapunov exponent fluctuates a
zero and this is expected to be common in simulations
higher-dimensional systems@6#. It is therefore highly desir-
able to make exact properties accessible: If the exact tra
tory could be derived this would be an excellent start
point for calculating the exact correlation function, invaria
measure, Lyapunov exponent, or other quantities@7#. In par-
ticular it would also offer the possibility of determining th
exact long-time behavior of relevant physical quantiti
Even more important may be the fact that analytical rep
sentations of chaotic motion are of principal interest and
certainly enhance our understanding of the complexity
chaotic dynamics in general. Typical questions that co
then be addressed are as follows: How does the expone
sensitivity with respect to the initial conditions come abou
Are there any characteristic~scaling! properties and/or self
PRE 581063-651X/98/58~1!/369~7!/$15.00
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similar structures of the analytical expressions that are
sponsible for the complex stretching and folding process
chaotic dynamics?

The current investigation represents a step in the ab
direction and provides closed analytical formulas for tw
classes of one-dimensional unimodal, dissipative, ergo
and chaotic maps of the interval, each containing an infin
number of members. In particular we will derive exact so
tions for two classes of maps: the conjugates to both
symmetric as well as asymmetric tent maps. Using these
lutions we will derive exact expressions for important phy
cal quantitites such as the correlation function. Some spe
examples are discussed in detail, thereby demonstrating
deviation of exact and numerically determined properties

II. SOLUTIONS TO THE CHAOTIC DYNAMICS
OF THE GENERAL CONJUGATES
OF THE SYMMETRIC TENT MAP

A. Trajectories

Let us begin our investigation by considering the symm
ric tent map~STM! @3#. The nth iterate of the STMt (n)(x)
possesses 2n monotonicity intervals with alternating consta
slopes 2n and 22n. The zeros and maxima are at the po
tions k/2n with k51, . . . ,2n. This makes it possible to rep
resentt (n)(x) in the form

t ~n!~x!55 2nx22~k21!; xPF2~k21!

2n
,
2k21

2n G
22nx12k; xPF2k21

2n
,
2k

2nG .

~1!

The above formula can be recast into the following ve
simple expression

t ~n!~x!512u~2nx mod 2!21u, ~2!

where mod is the modulo operation. We consider now
family of mapsg(x)5u+t+u21(x), which are obtained from
the STM by conjugation with an invertible and differentiab
369 © 1998 The American Physical Society
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function u(x), which maps the unit interval onto itself an
obeysu(0)50, u(1)51 @8#. The nth iterates of the maps
$g(x)% are then given by

g~n!~x!5~u+t+u21!+~u+t+u21!

+•••+~u+t+u21!~x!

5u+t ~n!+u21~x! ~3!

and thereforeg(n)(x) takes on the following appearance:

g~n!~x!5u„12u$@2nu21~x!# mod 2%21u…, ~4!

which represents a closed form analytical solution to the
namics of the maps conjugated to the STM. The gen
conjugation yields a variety of symmetric as well as nonsy
metric maps. Imposing the restrictive conditionu(x)51
2u(12x) for the conjugating functionsu(x) we obtain the
special class of the so-called doubly symmetric maps
which both the invariant density as well as the map is sy
metric. In particular if we use the specific conjugatio
ul(x)5sin2(px/2) and correspondingly ul

21(x)
5(1/p)arccos(122x) we arrive at the logistic mapl (x)
54x(12x) and after a little algebra at the Pincherle´ relation
l (n)(x)5 1

2 $12cos@2narccos(122x)#% for the nth iterate of
the logistic map.
d
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e

n
e

-
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Equation~4! nicely demonstrates the exponential sensit
ity with respect to the initial conditions as well as the infini
process of stretching and folding. The stretching proc
takes place through the multiplication with an exponen
factor (2n) and the folding through the mod function, whic
cuts with increasing iterations an increasing number of dig
making a more detailed specification of the initial conditio
necessary in order to describe the actual motion.

B. Exact properties and examples

Since the Lyapunov exponent is invariant with respect
conjugation@3,9# all members of the above-discussed cla
of maps possess the same Lyapunov exponentl5 ln2. In
particular, sincem(x)5x is the invariant measure of th
STM, the measure of the conjugated maps ism(x)
5u21(x) and, therefore, varies widely with changing conj
gating function. Next let us derive analytical expressions
another important physical quantity, namely, the correlat
function, which is defined byC(n)5Ĉ(n)2 x̄2 with Ĉ(n)
5*0

1g(n)(x)xdm(x) and the mean valuex̄5*0
1xdm(x). Let

us denote the positions of the zeros and maxima ofg(n)(x)
by $x2k% and $x2k21%, respectively. Using the fact tha
g(n)(x) is conjugate to some ‘‘original’’ maph(n)(x) as well
as the relationu(yi)5xi the correlation function can be de
composed as follows:
t
tion

s. Let

ular
e

Ĉ~n!5 (
k51

2n21

Ĉk~n! with Ĉk~n!5E
y2k

y2k11
u~x!u„h~n!~x!…dx1E

y2k11

y2~k11!

u~x!u„h~n!~x!…dx, n.0. ~5!

In order to provide exact correlation functions for some specific classes of maps we now specialize to the case thah(x) is
given by the STM. Using Eq.~1! we can derive the following simple structure for the terms of the sum of the correla
function:

Ĉk~n!5E
~k21!/2n21

~2k21!/2n

u~x!u„2nx22~k21!…dx1E
~2k21!/2n

k/2n21

u~x!u~22nx12k!dx. ~6!

In general the termsĈk(n) can be evaluated analytically as we shall show in the following by means of a few example
us first choose the conjugationu(x)5x1/(11b), which results in the invariant measurem(x)5x11b and the corresponding
normalized power law densityr(x)5(b11)xb, b.21. Due to their scaling properties power law densities are of partic
interest for physical systems with critical or self-similar behavior. Using Eqs.~5! and~6! we arrive after some algebra at th
following closed form analytical expressions for the corresponding correlation function:

C~n!5S b11

b13D S 1

2nD ~b12!/~b11!

12[22n~b12!]/ ~b11!12~12n!~b12!/~b11! (
k52

2n21 H 1

2
~k21!1/~11b!BS 1,

b12

b11D
32F1S 21

11b
,
21b

11b
;
312b

11b
;

21

2~k21! D121/~11b!k~b13!/~b11!BS 21b

11b
,
21b

11b
,

1

2kD J 2S b11

b12D 2

, ~7!
r-

he
where B(a,b) and B(a,b,x) denote the complete an
incomplete unnormalized Beta function, respective
and 2F1(a,b,c,x) is the hypergeometric function. For th
particular caseb50 the above expression reduces to thed
correlation C(n)}dn0 as expected. Figure 1~a! shows the
absolute value of the above correlation function for differe
values of the powerb. The short time as well as long tim
,

t

behavior change somewhat with changing parameterb. The
asymptotic behavior (n→`) of C(n) is an exponential de-
cay. The decay constantt can be determined using the Eule
MacLaurin sum formula@10# for the asymptotic expansion
of Eq. ~7!. It turns out that for b.0 t5@(b12)/(b
11)# ln2 while for 21,b,0 we havet52ln2 independent
of b. Having obtained the exact correlation function for t



th
ic
f

0

r
oi
an
in
iv
m

in-

ge
la

on

(

ics
the

the
es-
veral

or
he
n

ows

dis-

-
ss

nter-
by

or
gth
ed

he
he
of

p-
be

on

s

PRE 58 371ANALYTICAL SOLUTIONS TO ONE-DIMENSIONAL . . .
above class of maps with power law density we are in
position to compare these results with those of numer
trajectory simulations. Figure 1~b! shows the comparison o
the exact correlation function forb55.0 ~full circles! with
the results of numerical trajectory calculations using 13

~squares!, 104 ~diamonds!, and 105 ~triangles! points. Obvi-
ously there is a strong inherent deviation and in particula
can be observed that an enhancement of the number of p
of the numerically calculated trajectory does not yield
improvement in the statistical accuracy of the correspond
correlation functions. This is due to the fact that a na
numerical simulation loses for the above dynamical syste
very rapidly the original trajectory and due to numerical
accuracies gets trapped on a certain ‘‘orbit.’’

Finally let us provide one more example out of a lar
number accessible by the above given analytical formu
We choose as a conjugating functionu(x)5sin@(p/2)x#,
which results in the measurem(x)5(2/p)arcsin(x) and the
invariant densityr(x)5(2/p)1/A12x2. A straightforward

FIG. 1. ~a! The logarithm of the absolute value of the correlati
function for the conjugationu(x)5x1/(11b) of the STM for differ-
ent values of the parameterb. The valuesb520.95,20.5,11.0,
15.0,150.0 correspond to the curves with the full circles, circle
plus, full triangles, and full boxes, respectively.~b! The exact cor-
relation function forb55.0 ~solid line! together with the correla-
tion functions resulting from numerical trajectory calculations~bro-
ken lines! with 103 ~squares!, 104 ~diamonds!, and 105 ~triangles!
points.
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but tedious calculation yields the termsCk(n), which can be
summed up to the final beautiful result of the correlati
function

C~n!5
2n11

p~22n21!
cotS p

2n11D 2S 2

p D 2

, ~8!

which shows with respect to its asymptotic behaviorn
→`) an exponential decay with a decay constant 2 ln2.

III. SOLUTIONS TO THE CHAOTIC DYNAMICS
OF THE CONJUGATES OF THE ASYMMETRIC

TENT MAP

Solving the problem of the chaotic and ergodic dynam
generated by the general class of maps conjugated to
asymmetric tent maps~ATM ! @3# is a much more intricate
task than the corresponding solution of the dynamics of
maps conjugate to the STM. In order to develop the nec
sary concepts and techniques we therefore proceed in se
steps.

A. The concept of mode superposition

The knowledge of the position of the minima and/
maxima, i.e., the length of the monotonicity intervals, of t
nth iterate of the ATM is central to the derivation of a
analytical expression for thenth iterate of the ATM. In the
present subsection we therefore provide a method that all
one to determine the lengthLn( i ) of the i th monotonicity
interval ~we count the intervals starting from the origin! by a
decomposition technique of the corresponding frequency
tribution r n( i ) ~see below! into independent modes.

The ATM is unimodal with constant slopes 1/p and
21/q @q5(12p)# on the two monotonicity intervals, re
spectively. First of all we remark that each iteration proce
n→n11 divides a monotonicity interval of thenth iterate
into two monotonicity intervals of the (n11)th iterate,
which possesses positive and negative slopes in these i
vals, respectively. The ratios of their lengths are given
p:q or q:p depending on whether thenth iterate of the ATM
on the original monotonicity interval possesses a positive
a negative slope, respectively. In order to specify the len
of the i th monotonicity interval we do not need such detail
information like the symbolic sequence@3# but only the fre-
quency of the occurrence of the factorsp and q during the
iteration process. The number of different lengths for t
monotonicity intervals is therefore much smaller than t
number of monotonicity intervals themselves. The length
the i th monotonicity interval of thenth iterate of the ATM is
given by

Ln~ i !5pn2r n~ i !qr n~ i !, ~9!

wherer n( i ) is the frequency of the occurrence of the factorq
during the branching process into the finali th monotonicity
interval of thenth iterate. Using the above-described pro
erties of the branching of the monotonicity intervals it can
shown thatr n( i ) obeys the following recursion formula:

,
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r 1~1!50,

r n11~ i !5H r n~ i !, 1< i<2n

r n@2n112~ i 21!#11, 2n11< i<2n11,
~10!

r n11( i ) can therefore be obtained fromr n( i ) through a re-
flection sn of the functionr n( i ) ( i 51, . . . ,2n) with respect
to the vertical axis located at 2n1 1

2 and subsequent additio
tn of 1 to the attached part ofr n11( i ), which yields in total
r n11( i )5(tn+sn)r n( i ). This process is illustrated in Fig. 2
for the three functionsr 1( i ),r 2( i ),r 3( i ).

In the following we derive a decomposition of the fun
tions r n( i ) into different modes, i.e.,r n( i ) can then be de-
scribed by a superposition of these modes. Let us introd
n21 modesMn,m( i ),m52 . . .n and the additional mode
Nn . Each modeMn,m( i ) is defined on the finite supporti
51, . . . ,2n and oscillates as a function ofi with the period
Tm52m. In addition it possesses a phasef(Mn,m)52m22

which describes the shifting of the oscillations on thei axis.
The modeNn is characterized by the period 2n and the phase
f(Nn)52n21. The equally weighted superposition of the
modes yields the quantityr n( i ), i.e., we have

r n~ i !5 (
m52

n

Mn,m~ i !1Nn~ i !. ~11!

Figure 3 illustrates the three modesM3,2( i ), M3,3( i ), and
N3( i ), which are necessary in order to build upr 3( i ). In
particular we now briefly verify that the above decompo
tion obeys the recursion formula given in Eq.~10!. The ac-
tion of the reflectionsn onto the modesMn,m( i ) is given by

FIG. 2. The frequency distributionsr 1( i ), r 2( i ), and r 3( i ) of
the ATM.
ce

-

Mn,m→
sn

Mn11,m , Nn→
sn

Mn11,n11 . ~12!

The application of the subsequent additiontn to the reflected
modes corresponds to the inclusion of the modeNn11. In
total we therefore arrive at the desired relation

r n~ i !5 (
m52

n

Mn,m~ i !1Nn~ i ! →
tn+sn

r n11~ i !5 (
m52

n11

Mn11,m~ i !1Nn11~ i !.

~13!

In the following subsection we provide construction pri
ciples and closed analytical formulas for the modesMn,m( i )
andNn .

B. Construction of the modes

Each mode function is defined on 2n natural numbers and
their continuation and representation on the real axis is th
fore not unique. In the present subsection we provide t
different representations for the mode functionsMn,m( i ) and
Nn( i ). The first one is characterized by the application of t
step function to trigonometric functions and the second o
uses polynomials and their periodic continuation in order
describe the modes.

Looking at Fig. 3 suggests a representation of the mo
by the action of the step function (Q(x)5$1:x>0;0:x
,0%) onto an oscillating function. Choosing the sin functio
for the oscillating part we can adapt the periodicity a
phase in order to obtain the modesMn,m( i ) and Nn( i ), re-
spectively. They take on the following appearance:

FIG. 3. The modesM3,2( i ), M3,3( i ), andN3( i ) of the ATM.
Mn,m~ i !5QXsinS p
2i 2~2m2111!

2m D C, Nn~ i !5QXsinS p
2i 2~2n11!

2n D C. ~14!

For the functionr n( i ) we therefore arrive at the expression
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r n~ i !5 (
m52

n

QS sinS p
2i 2~2m2111!

2m D D 1QS sinS p
2i 2~2n11!

2n D D . ~15!

Introducing the above formula forr n( i ) in Eq. ~9! we have an analytical expression for the length of thei th monotonicity
interval. The only feature that could be seen as a disadvantage of the above representation is its discontinuity thr
introduction of the step function. It is therefore desirable to gain a second representation of the mode functions tha
have the property of being smooth with respect to the continuation onto the entire real axis. We therefore use poly
whose coefficients will be adapted correspondingly. The introduction of a sin function yields then a periodic continua
the polynomials and allows one to adapt to the functional form of the modes via a corresponding scaling operation a
shift.

The first step in the derivation of a second, smooth, representation of the modesMn,m( i ) andNn( i ) is the construction of
a polynomial with suitable properties. To achieve this, our starting point is a polynomialpm(x), which possesses at 2m21

pointsxi
1 the value11 and at other 2m21 pointsxi

2 the value21,

pm~x1
1!5pm~x2

1!5•••5pm~x2m21
1

!51, pm~x1
2!5pm~x2

2!5•••5pm~x2m21
2

!521. ~16!

For the time being the domain of definition of the above introduced polynomial includes 2m integer values and possesses 2m21

zeros. Such a polynomial can be written as a sum of 2m terms, each of the terms thereby acquires the value11 or 21 at
exactly one position given byxi

1 or xi
2 , respectively, whereas at all other positionsxj

1 , xj
2 ,i 5” j , it vanishes. These properties

are guaranteed if each term consists of a normalized product of linear factors and we therefore arrive at the following
expression for the polynomial pm(x):

pm~x!5 (
i 51

2m21

~x2xi
2!

~xi
12xi

2!
)
j 51
j 5” i

2m21

~x2xj
1!~x2xj

2!

~xi
12xj

1!~xi
12xj

2!
2 (

i 51

2m21

~x2xi
1!

~xi
22xi

1!
)
j 51
j 5” i

2m21

~x2xj
1!~x2xj

2!

~xi
22xj

1!~xi
22xj

2!
. ~17!

The points of supportxi
1 , xi

2 ought to be equidistant in the unit interval@0,1# and should be arranged symmetrically wi
respect to 0, i.e., we have

xi
252xi

15xi , xi5
2i 21

2m
. ~18!

After a little algebra this leads to an essential simplification of the polynomials~17!

pm~x!5 (
i 51

2m21

x

xi
)
j 51
j 5” i

2m21
x22xj

2

xi
22xj

2
. ~19!

As a next step we perform a periodic continuation of the polynomialpm(x) by substituting

x→sin~px!, xi→sin~pxi !. ~20!

In order to describe the modes with the constructed polynomials we have to adapt the frequency as well as pha
oscillating periodic functions defined by Eqs.~19! and ~20!. In addition a shift is performed in order to make the points
support equal to integers on which the modes are defined. Finally we arrive at the following expressions for the in
modes:

Mn,m~x!5
1

2 H 11 (
i 51

2m21

sin$p@2x2~2m2111!#/2m%

sin@p~2i 21!/2m#
)
j 51
j 5” i

2m21

sin2$p@2x2~2m2111!#/2m%2sin2@p~2 j 21!/2m#

sin2@p~2i 21!/2m#2sin2@p~2 j 21!/2m# J , ~21!

Nn~x!5
1

2H 11 (
i 51

2n21

sin$p@2x2~2n11!#/2n%

sin@p~2i 21!/2n#
)
j 51
j 5” i

2n21

sin2$p@2x2~2n11!#/2n%2sin2@p~2 j 21!/2n#

sin2@p~2i 21!/2n#2sin2@p~2 j 21!/2n# J ~22!

and for the frequency distributionr n( i ) of the i th monotonicity interval
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r n~ i !5 (
m52

n
1

2H 11 (
i 51

2m21

sin$p@2x2~2m2111!#/2m%

sin@p~2i 21!/2m#
)
j 51
j 5” i

2m21

sin2$p@2x2~2m2111!#/2m%2sin2@p~2 j 21!/2m#

sin2@p~2i 21!/2m#2sin2@p~2 j 21!/2m# J
1

1

2H 11 (
i 51

2n21

sin$p@2x2~2n11!#/2n%

sin@p~2i 21!/2n#
)
j 51
j 5” i

2n21

sin2$p@2x2~2n11!#/2n%2sin2@p~2 j 21!/2n#

sin2@p~2i 21!/2n#2sin2@p~2 j 21!/2n# J . ~23!
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This concludes our construction of the modes.

C. Analytical representation of the chaotic dynamics

The knowledge of the frequency distributionr n( i ) is a
key ingredient for the derivation of analytical solutions to t
chaotic motion of the conjugates of the ATM. Arbitraril
high iterates are now accessible in closed analytical form
the following procedure.

First of all we give some important quantities related
the nth iterated map:

~i! The length of thei th monotonicity intervals is given by

Ln~ i !5pn2r n~ i !qr n~ i !. ~24!

~ii ! The slope in thei th monotonicity interval is

Sn~ i !5pr n~ i !2nq2r n~ i !~21!~ i 21!. ~25!

~iii ! The left and right boundaryGn
L( i ) andGn

R( i ) of the
i th monotonicity interval can be obtained by summation
the lengths of the corresponding intervals:

Gn
L~ i !5(

j 51

i 21

Ln~ j !5(
j 51

i 21

pn2r n~ j !qr n~ j !,

Gn
R~ i !5(

j 51

i

Ln~ j !5(
j 51

i

pn2r n~ j !qr n~ j !. ~26!

~iv! Definition of the index function: Let us define a fun
tion I n :@0,1#→$1, . . . ,2n% whose valueI n(x) tells us the
number of the monotonicity intervals in whichx is con-
tained. The index function can be described with the help
the step functionQ(x) in the following way

I n~x!5(
i 51

2n

Q„x2Gn
L~ i !…5(

i 51

2n

QS x2(
j 51

i 21

pn2r n~ j !qr n~ j !D .

~27!

We are now in the position of formulating thenth iterate
tp
(n)(x) of the ATM in a closed analytical expression:

tp
~n!~x!5$x2Gn

L
„I n~x!…%Sn„I n~x!…1 1

2 @11~21! I n~x!#.
~28!

Inserting Eqs.~26! and~27! into the above expression yield
ia

f

f

tp
~n!~x!5Fx2 (

j 51

I n~x!21

pn2r n~ j !qr n~ j !Gpr n[ I n~x!] 2nq2r n[ I n~x!]

3~21! I n~x!211
1

2
@11~21! I n~x!#. ~29!

Similar to the case of the STM we obtain thenth iterate
gtp

(n)(x) of the maps conjugated to the ATM by the followin

decomposition

gtp

~n!~x!5u+tp+u21+u+tp•••+tp+u21~x!

5u+tp
~n!+u21~x!, ~30!

which gives together with Eq.~29! our final result:

gtp

~n!~x!5uH Fu21~x!2 (
j 51

I n„u
21~x!…21

Ln~ j !GSn@ I n„u
21~x!…#

1 1
2 @11~21! I n„u

21~x!…#J . ~31!

Equation~31! can be used to calculate arbitrarily high ite
ates of the conjugates of the ATM. As an example we sh
in Fig. 4 the 8th iterate of the conjugateu(x)5sin2(px/2) of
the ATM for p50.9, which gives an idea of the scalin
structures contained in the above analytical formula.

The invariant measure of the conjugates of the ATM
given by m(x)5u21(x) and the Lyapunov exponent i
known to bel52pln(p)2(12p)ln(12p) @11#. The above
Eq. ~31! can be used to calculate the correlation functions
the conjugates of the ATM as well as any other physi
property.

FIG. 4. The eighth iterate of the conjugateu(x)5sin2(px/2) of
the ATM for p50.9 calculated through Eq.~31!.
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IV. CONCLUSIONS

We have presented analytical solutions to the chaotic
ergodic dynamics of two classes of noninvertible sin
humped maps: the conjugates of the symmetric as wel
asymmetric tent map. With the exception of the iterates
the logistic map this is, to our knowledge, the first time th
closed analytical representations of chaotic trajectories
derived. This enables us to calculate exact physical qua
ties, such as the time correlation function, even in th
cases for which numerical trajectory calculations fail to p
dict the correct long time behavior. The complex stretch
and folding process of the iteration of the dynamical syst
is clearly revealed within our analytical approach through
nd

ic

e,

ys
d

as
f
t
re
ti-
e
-
g

e

combination of conjugating functions, scale transformatio
and cutoff operations.

The key to the construction of the analytical solutio
is the complex superposition of modes connected w
the monotonicity intervals of thenth iterate of the dynamica
system. We conjecture that this holds also for the gen
case of arbitrary single humped maps and might be
hint towards the construction of their solutions. The boun
aries of the monotonicity intervals are then given by t
preimages of the maximum of the dynamical law.

ACKNOWLEDGMENT

One of the authors~F.K.D.! gratefully acknowledges fi-
nancial support by the European Union.
l

@1# H. G. Schuster,Deterministic Chaos~VCH, Weinheim, 1994!.
@2# S. Pincherle´, Rend. della Real Acad. dei Lincei29, 329~1920!;

S. Rabinovich, G. Berkolaiko, S. Buldyrev, A. Shehter, a
S. Havlin, Int. J. Bifurcation Chaos Appl. Sci. Eng.7, 837
~1997!.

@3# J. L. Cauley,Chaos, Dynamics and Fractals: An Algorithm
Approach to Deterministic Chaos, Cambridge Nonlinear Sci-
ence Series Vol. 2~Cambridge University Press, Cambridg
1994!.

@4# C. Grebogi, S. M. Hammel, J. A. Yorke, and T. Sauer, Ph
Rev. Lett.65, 1527~1990!.

@5# T. Sauer, C. Grebogi, and J. A. Yorke, Phys. Rev. Lett.79,
.

59 ~1997!.
@6# S. Dawson, C. Grebogi, and T. Sauer, Phys. Rev. Lett.73,

1927 ~1994!.
@7# F. K. Diakonos and P. Schmelcher, Phys. Lett. A211, 199

~1996!.
@8# G. Györgyi and P. Szepfalusy, Z. Phys. B55, 179 ~1984!.
@9# G. Györgyi and P. Szepfalusy, J. Stat. Phys.34, 451 ~1984!.

@10# C. M. Bender and S. A. Orszag,Advanced Mathematica
Methods for Scientists and Engineers~McGraw-Hill, New
York, 1978!.

@11# H. Mori, B. So, T. Ose, Prog. Theor. Phys.66, 1266
~1981!.


