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Analytical solutions to one-dimensional dissipative and discrete chaotic dynamics
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Analytical solutions to the chaotic and ergodic motion of a certain class of one-dimensional dissipative and
discrete dynamical systems are derived. This allows us to obtain exact expressions for physical properties such
as the time correlation function. We illustrate our solutions by means of a few examples for which conven-
tional numerical trajectory calculations fail to predict the correct behaj&#063-651X98)01207-0

PACS numbgs): 05.45+b, 95.10.Fh

I. INTRODUCTION similar structures of the analytical expressions that are re-
sponsible for the complex stretching and folding process of
Chaotic behavior is a characteristic feature of the overchaotic dynamics?

whelming majority of deterministic nonlinear dynamical sys- The current investigation represents a step in the above
tems[1]. Classical chaos manifests itself in the exponentiadirection and provides closed analytical formulas for two
sensitivity of the trajectories with respect to the initial con-classes of one-dimensional unimodal, dissipative, ergodic,
ditions and has nicely been understood as the very compleid chaotic maps of the interval, each containing an infinite
topological process of everlasting stretching and folding 0fljumber of members. In particular we WI||' derive exact solu-
the motion. In view of the complexity of chaotic trajectories tions for two classes of maps: the conjugates to both the
it appears hard to imagine that chaotic motion could be deSymmetric as well as asymmetric tent maps. Using these so-
scribed by means of closed analytical formulas. To ourutions we will derive exact expressions for important physi-
knowledge there exists only one exception, i.e., the dynamica| quantitites sgch as the_ correlguon function. Some specmc
cal law, which allows the representation of its chaotic trajec-€x@mples are discussed in detail, thereby demonstrating the
tories for arbitrarily long times in a closed analytical form: deviation of exact and numerically determined properties.
The solutions of the logistic map in the ergodic chaotic limit

are given by the celebrated Pinchemdation[2]. In contrast Il. SOLUTIONS TO THE CHAOTIC DYNAMICS
to our lack of knowledge concerning exact expressions for OF THE GENERAL CONJUGATES
chaotic motion there exists a well-founded and justified in- OF THE SYMMETRIC TENT MAP

terest in obtaining solutions to ergodic and chaotic behavior.
On the one hand it is clear that the frequently used nu-
merical solutions of chaotic dynamical systems do not yield Let us begin our investigation by considering the symmet-
one and the same trajectory for long time scdds Never-  ric tent map(STM) [3]. The nth iterate of the STM(M(x)
theless due to the shadowing argument statistical quantitigsossesses™2monotonicity intervals with alternating constant
of chaotic ergodic systems with and without external noiseslopes 2 and —2". The zeros and maxima are at the posi-

can in many cases be approximately obtained through a nuions k/2" with k=1, . ..,2. This makes it possible to rep-
merical investigatior{4,5]. However, there are exceptions, resentt("(x) in the form
such as the case when a Lyapunov exponent fluctuates about

A. Trajectories

zero and this is expected to be common in simulations of 2(k—1) 2k—1
higher-dimensional systen§]. It is therefore highly desir- 2"x—=2(k=1); Xxe|—/——,—

able to make exact properties accessible: If the exact trajec- M (x) = 2 2 1)
tory could be derived this would be an excellent starting 2k—1 2k

point for calculating the exact correlation function, invariant —2"x+2k; xe T anl

measure, Lyapunov exponent, or other quant{t@sin par- 2 2

ticular it would also offer the possibility of determining the , )

exact long-time behavior of relevant physical quantities.Th€ above formula can be recast into the following very
Even more important may be the fact that analytical repreSimple expression

sentations of chaotic motion are of principal interest and can

certainly enhance our understanding of the complexity of tM(x)=1-[(2"x mod 2 -1, 2
chaotic dynamics in general. Typical questions that could

then be addressed are as follows: How does the exponentiathere mod is the modulo operation. We consider now the
sensitivity with respect to the initial conditions come about?family of mapsg(x) = ueteu™1(x), which are obtained from
Are there any characteristiscaling properties and/or self- the STM by conjugation with an invertible and differentiable
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function u(x), which maps the unit interval onto itself and  Equation(4) nicely demonstrates the exponential sensitiv-
obeysu(0)=0, u(1)=1 [8]. The nth iterates of the maps ity with respect to the initial conditions as well as the infinite

{g(x)} are then given by process of stretching and folding. The stretching process
takes place through the multiplication with an exponential
g™ (x)=(uetou™1)o(uctou™1) factor (2") and the folding through the mod function, which

o . o(Uotoy~ cuts with increasing iterations an increasing number of digits
wee(ueteum)(X) making a more detailed specification of the initial conditions
=UetMoy~1(x) (3y  hecessary in order to describe the actual motion.

and thereforgg(x) takes on the following appearance: B. Exact properties and examples

4 Since the Lyapunov exponent is invariant with respect to
IANC) conjugation[3,9] all members of the above-discussed class

which represents a closed form analytical solution to the dy®f Maps possess the same Lyapunov exponentn2. In

namics of the maps conjugated to the STM. The generarparticular, sinceu(x)=x is the inyariant measure .of the
conjugation yields a variety of symmetric as well as nonsym-ST'\f"l the measure of the conjugated maps /$x)
metric maps. Imposing the restrictive conditiar{x)=1  —Y "(X) and, therefore, varies widely with changing conju-
—u(1—x) for the conjugating functiona(x) we obtain the gating fu.nctlon. Next Ie; us derlvg analytical expressions for
special class of the so-called doubly symmetric maps foPnOther important physical quantity, namely, the correlation
which both the invariant density as well as the map is symfunction, which is defined byc(n)=C(n)—x* with C(n)
metric. In particular if we use the specific conjugation = [3g(™(x)xdu(x) and the mean valug= [3xdu(x). Let
uy(x) =sir?(mx/2) and correspondingly  u; *(x) us denote the positions of the zeros and maximg®f(x)
=(1/m)arccos(t2x) we arrive at the logistic map(x) by {x5} and {x,_1}, respectively. Using the fact that
=4x(1—x) and after a little algebra at the Pinchertgation g™ (x) is conjugate to some “original” map(™(x) as well
1(M(x) =3{1—cog2"arccos(t 2x)]} for the nth iterate of as the relatioru(y;)=x; the correlation function can be de-

g0 =u@-[{{2"u"'(x] mod 2-1

the logistic map. composed as follows:
2n71
- ~ . ~ k+1 Y2(k+1)
Cn)= 2, Cu(n) with Cy(n)= u(x)u(h“”(x))dx%—j u(x)u(h™(x))dx, n>0. (5)
k=1 Yok Yak+1

In order to provide exact correlation functions for some specific classes of maps we now specialize to the tgz¢ ihat
given by the STM. Using Eq(1) we can derive the following simple structure for the terms of the sum of the correlation
function:

o (2k—1)/2" k21
Cy(n)= u(x)u(@"x—2(k—1))dx+ u(x)u(—2"x+2k)dx. (6)
(k—1)/2" 1 (2k—1)/2"

In general the term€,(n) can be evaluated analytically as we shall show in the following by means of a few examples. Let
us first choose the conjugatiar(x) =xY1*#) which results in the invariant measurgx) =x**# and the corresponding
normalized power law density(x) = (8+ 1)x?, B> —1. Due to their scaling properties power law densities are of particular
interest for physical systems with critical or self-similar behavior. Using Es)sand (6) we arrive after some algebra at the
following closed form analytical expressions for the corresponding correlation function:

(B+2)I(B+1) 2n-1
B+1\[ 1 - - 1 B+2
B i | et [2-n(B+2))/(B+1) 4 o(1=n)(B+2)/(B+1) Tk Mapg( 1P 2
c(n) 573 o +2 +2 k§=}2 5(k=1) B 1’/3+1
_ _ 2
= 1 2+p 3+2p  —1 4 U+ B)(B+3)(B+ 1R 2tp 2+p 1| (Bt @
2 H1+B8'1+B8’ 1+8 '2(k—1) 1+8'1+pB'2k B+2] "

where B(a,b) and B(a,b,x) denote the complete and behavior change somewhat with changing paramgterhe
incomplete unnormalized Beta function, respectively,asymptotic behaviorn—«) of C(n) is an exponential de-
and ,Fq(a,b,c,x) is the hypergeometric function. For the cay. The decay constantcan be determined using the Euler-
particular caseB=0 the above expression reduces to the MacLaurin sum formuld10] for the asymptotic expansion
correlationC(n)x 8, as expected. Figure(d shows the of Eq. (7). It turns out that for >0 7=[(8+2)/(8
absolute value of the above correlation function for different+ 1)]In2 while for — 1< 8<0 we haver=2In2 independent
values of the poweg. The short time as well as long time of 8. Having obtained the exact correlation function for the
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but tedious calculation yields the ter@g(n), which can be
summed up to the final beautiful result of the correlation
function

C(n)= 2 "o< il )—(3)2 (8)
( - 71_(22n_1)\" 2n+1 al

which shows with respect to its asymptotic behavior (
—o0) an exponential decay with a decay constant 2 In2.

IC(n)|

[ll. SOLUTIONS TO THE CHAOTIC DYNAMICS
. . . OF THE CONJUGATES OF THE ASYMMETRIC
0.0 5.0 10.0 15.0 TENT MAP

Solving the problem of the chaotic and ergodic dynamics
generated by the general class of maps conjugated to the
asymmetric tent map6ATM) [3] is a much more intricate
task than the corresponding solution of the dynamics of the
maps conjugate to the STM. In order to develop the neces-
sary concepts and techniques we therefore proceed in several
steps.

10

|C(n)|

A. The concept of mode superposition

The knowledge of the position of the minima and/or
maxima, i.e., the length of the monotonicity intervals, of the
nth iterate of the ATM is central to the derivation of an
analytical expression for theth iterate of the ATM. In the
present subsection we therefore provide a method that allows
one to determine the length, (i) of the ith monotonicity
interval (we count the intervals starting from the origioy a

FIG. 1. (8 The logarithm of the absolute value of the correlation decomposition technique of the corresponding frequency dis-
function for the conjugatiom(x) =x%1*#) of the STM for differ-  tributionr (i) (see belowinto independent modes.
ent values of the paramet@. The valuesf=-0.95-0.5+1.0, The ATM is unimodal with constant slopes pl/and
+5.0,+50.0 correspond to the curves with the full circles, circles, —1/q [g=(1—p)] on the two monotonicity intervals, re-
plus, full triangles, and full boxes, respectiveli) The exact cor-  spectively. First of all we remark that each iteration process
relation function forg=5.0 (solid line) together with the correla- n—n+1 divides a monotonicity interval of theth iterate

0.0 5.0 100 150 20.0

h

tion functions resulting from numerical trajectory calculatiéhe-  jnto two monotonicity intervals of then(+1)th iterate,
ken lineg with 10° (squares 10" (diamonds, and 10 (triangles  \hich possesses positive and negative slopes in these inter-
points. vals, respectively. The ratios of their lengths are given by

above class of maps with power law density we are in theé?:d Or :p depending on whether theh iterate of the ATM
position to compare these results with those of numericaPn the original monotonicity interval possesses a positive or
trajectory simulations. Figure(ti) shows the comparison of @ negative slope, respectively. In order to specify the length
the exact correlation function fg8=>5.0 (full circles) with _of the|th_ monotonlcny mter\_/al we do not need such detailed
the results of numerical trajectory calculations using 10 information like the symbolic sequengg] but only the fre-
(squarel 10° (diamonds, and 16 (triangles points. Obvi- ~ duency of the occurrence of the fact.cpsandq during the
ously there is a strong inherent deviation and in particular iftération process. The number of different lengths for the
can be observed that an enhancement of the number of poirflRonotonicity intervals is therefore much smaller than the
of the numerically calculated trajectory does not yield annumber of monpt.onl.cny intervals thgmselves. The Iength of
improvement in the statistical accuracy of the corresponding€ith monotonicity interval of theth iterate of the ATM is
correlation functions. This is due to the fact that a naivediven by
numerical simulation loses for the above dynamical systems

very rapidly the original trajectory and due to numerical in-
accuracies gets trapped on a certain “orbit.”

Finally let us provide one more example out of a largewherer (i) is the frequency of the occurrence of the faajor
number accessible by the above given analytical formulasduring the branching process into the fimtdl monotonicity
We choose as a conjugating functiar{x) = sin(=/2)x], interval of thenth iterate. Using the above-described prop-
which results in the measupe(x)=(2/m)arcsink) and the erties of the branching of the monotonicity intervals it can be
invariant densityp(x)=(2/)1/y1—x2. A straightforward shown thatr,(i) obeys the following recursion formula:

Lo(i)=p" g, ©
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FIG. 2. The frequency distributions;(i), r,(i), andrj(i) of
the ATM.

r1(1)=0
o), 1sis2n
Mra(i)= r[2" - (i—1)]+1, 2'+1<i<2"tl

(10

ro+1(i) can therefore be obtained from(i) through a re-
flection o, of the functionr (i) (i=1, ...,2) with respect

to the vertical axis located at"2 3 and subsequent addition

7, Of 1 to the attached part of,, (i), which yields in total

rs1(i)=(7me0,)ry(i). This process is illustrated in Fig. 2

for the three functions(i),r,(i),rs(i).

In the following we derive a decomposition of the func-

tionsr,(i) into different modes, i.e,(i) can then be de-

scribed by a superposition of these modes. Let us introduc®
.n and the additional mode

n—1 modesM (i),m=2.
N,. Each modeM,, (i) is deﬁned on the finite support
=1,...,2" and oscillates as a function ofwith the period
Tn=2"M In addition it possesses a phagéM, ) =22
which describes the shifting of the oscillations on thexis.
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FIG. 3. The moded; (i), M3 (i), andN3(i) of the ATM.

Tn Tn

Mn,m‘)Mn-%—l,mi NnHMn+1,n+1- (12

The application of the subsequent additignto the reflected
modes corresponds to the inclusion of the mégg ;. In
total we therefore arrive at the desired relation

n n°0n

rdU=2¥MmﬁD+Nm)ﬁ

n+1
rﬁﬂn=2;MnHMn+NMﬂu
(13)

In the following subsection we provide construction prin-
iples and closed analytical formulas for the mobigs,(i)

n-
B. Construction of the modes

Each mode function is defined o Batural numbers and
their continuation and representation on the real axis is there-

The modeN, '5 characterized by the period 2nd the phase fore not unique. In the present subsection we provide two

$(Ng)=2""1

modes ylelds the quantity, (i), i.e., we have

ran=2;Mmﬁn+Naw. (11)

Figure 3 illustrates the three modés; (i), Mz 4(i), and
N3(i), which are necessary in order to build wg(i). In

. The equally weighted superposition of these different representations for the mode functidfs (i) and

N,(i). The first one is characterized by the application of the
step function to trigonometric functions and the second one
uses polynomials and their periodic continuation in order to
describe the modes.

Looking at Fig. 3 suggests a representation of the modes
by the action of the step function®(x)={1:x=0;0:x
< 0}) onto an oscillating function. Choosing the sin function

particular we now briefly verify that the above decomposi-for the oscillating part we can adapt the periodicity and

tion obeys the recursion formula given in E40). The ac-
tion of the reflectiorno,, onto the mode$/, (i) is given by

Mn,m(|):(sm(w om

i om—1 s /9N
Lﬂ)) Nnm:@(sm(w%j”

For the functionr (i) we therefore arrive at the expression

phase in order to obtain the modik, (i) andN.(i), re-
spectively. They take on the following appearance:

). (14
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2i— (2™ 1+1)

2m

T +0 (15

rn(i):rZ,Z@(sin

) 2i—(2"+1)
sin WT :
Introducing the above formula far,(i) in Eqg. (9) we have an analytical expression for the length of ittemonotonicity
interval. The only feature that could be seen as a disadvantage of the above representation is its discontinuity through the
introduction of the step function. It is therefore desirable to gain a second representation of the mode functions that should
have the property of being smooth with respect to the continuation onto the entire real axis. We therefore use polynomials
whose coefficients will be adapted correspondingly. The introduction of a sin function yields then a periodic continuation of
the polynomials and allows one to adapt to the functional form of the modes via a corresponding scaling operation and phase
shift.

The first step in the derivation of a second, smooth, representation of the mgdg($) andN,(i) is the construction of
a polynomial with suitable properties. To achieve this, our starting point is a polyngm{a)), which possesses at"2!
pointsx;" the value+1 and at other 2-* pointsx; the value—1,

pm(X1+)= pm(X2+)= = pm(X;m—l)zlr Pm(X1)=Pm(Xz)="--= pm()(;m—l)= -1 (16)

For the time being the domain of definition of the above introduced polynomial inclUi8iege&yer values and possessés 2
zeros. Such a polynomial can be written as a sum"otetms, each of the terms thereby acquires the valdeor —1 at
exactly one position given by orx; , respectively, whereas at all other positio:rﬁs, X; ,i#], it vanishesThese properties
are guaranteed if each term consists of a normalized product of linear factors and we therefer atrthe following
expression for the polynomialx):

20 x=x) 2N (=X ) (x=x) (x=x7) 2 (x=xH)(x=x)
Pm(X)= 2, ' ’ ' ' ’ '

S0 IS O X0 x) F g x0T 06 )06 )

2mfl

17

The points of suppork;”, x; ought to be equidistant in the unit inter@,1] and should be arranged symmetrically with
respect to 0, i.e., we have

_ . 2i—-1
Xi :_xi =X, Xi= om (18)
After a little algebra this leads to an essential simplification of the polynortial)s
2m—1 2m71 2 2
X X=X
()= 2 1] 5. (19
i=1 Xjj=1 xt—x¢
j=i
As a next step we perform a periodic continuation of the polynomjgk) by substituting
X—sin(7Xx), X;—sin(mX;). (20

In order to describe the modes with the constructed polynomials we have to adapt the frequency as well as phase of the
oscillating periodic functions defined by Eq4.9) and (20). In addition a shift is performed in order to make the points of
support equal to integers on which the modes are defined. Finally we arrive at the following expressions for the individual
modes:

Mn,m(x): E 1+ E

1 2 sinfm2x— (2™ 14 1) )22 Sir{ ] 2x— (2™ 14 1)]/2™ — sir?[ (2] — 1)/2"] o
=1 sin (2 —1)/2™) ot Sire[ r(2i — 1)/2™] —sir?[ w(2j — 1)/2™] ’

2n71

1 sin{a 2x— (2"+ 1)]/2M 2 sirR{a[2x— (20+1)]/2" — sir?[ (2] — 1)/2"]
Np(X)= 51 1+ > ———— : : : :
2 =1 sinfw(2i—1)/2"] ot Sire[ r(2i — 1)/2"]— sir?[ w(2j — 1)/2"]

(22

and for the frequency distribution,(i) of theith monotonicity interval
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i) = 1
(D) mE:Z +;1 sifm(2i—1)/2" =1 Sir?[ (2 — 1)/2™] — siré[ 7(2j — 1)/2™]

JEd

" 1[ 2m1sin{w[2x—(2m‘1+1)]/2m}2mlsinz{w[Zx—(Zm‘lJr1)]/2m}—sin2[77(2j—1)/2"‘]}
2

(23

1+ >

S siwi-02 o Sir?[ m(2i — 1)/2"] - siré[ 7(2j — 1)/2"]

N 1{ 2 sinfal2x— (2"+ 1) J2"2 0 Sin?{m] 2x— (27+ 1)]/2" — Sir?[ (2] —1)/2“]]
5 .

This concludes our construction of the modes. In(x)—1
t;an)(x): X— 2 pn_rn(j)qrn(j) prn[ln(x)]_nq_rn[ln(x)]
=1
C. Analytical representation of the chaotic dynamics

The knowledge of the frequency distribution(i) is a X (—1)n0-14 E[1+(_1)In(x)]_ (29)
key ingredient for the derivation of analytical solutions to the 2
chaotic motion of the conjugates of the ATM. Arbitrarily . . ) )
high iterates are now accessible in closed analytical form vi%’ﬁ?"af to the case of the STM we obtain théh iterate
the following procedure. 9, (x) of the maps conjugated to the ATM by the following
First of all we give some important quantities related todecomposition
the nth iterated map:
(i) The length of théth monotonicity intervals is given by gis)(x): Uetpeu™ touet,,- - -otpouH(x)

Lo(i)=p" g, (24) =uotyVou~%(x), (30)

(i) The slope in théth monotonicity interval is which gives together with Eq29) our final result:

(U™ tx)) -1
V= nfn()—ny—rpi)_1)(-1) _ . _
Sn(H=p R =T @9 g£§><x>=uHu - 3 Lnu)]sn[ln(u )]
(i) The left and right boundar@.(i) andGR(i) of the
ith monotonicity interval can be obtained by summation of +l[1+(_1)ln(u’l(x))] _ (31)
the lengths of the corresponding intervals: 2

i-1 i-1 Equation(31) can be used to calculate arbitrarily high iter-
Liy= i)= n—ra(grni) ates of the conjugates of the ATM. As an example we show
Gnll) 1‘21 L)) 1‘21 P ar in Fig. 4 the 8th iterate of the conjugatéx) = sir’(mx/2) of
the ATM for p=0.9, which gives an idea of the scaling
[ [ structures contained in the above analytical formula.
Gﬁ(i):z Ln(J>=Z p"Talhgra(D), (26) ~ The invariant mielasure of the conjugates of the ATM is
=1 =1 given by u(x)=u"*(x) and the Lyapunov exponent is
known to bex = —pIn(p)—(1—p)in(1—p) [11]. The above
(iv) Definition of the index function: Let us define a func- Ed.(31) can be used to calculate the correlation functions of
tion 1,:0,1]—{1,...,2} whose valuel,(x) tells us the the conjugates of the ATM as well as any other physical
number of the monotonicity intervals in whick is con-  property.
tained. The index function can be described with the help of

the step functior® (x) in the following way ‘ ‘
08 ‘
2" 2" i-1 ' \
h(0)= 2, O(x-Gy(i))=2 0| x—3 p" gl ). 2 os |
=1 =1 =1 s
(27) =
g 04
We are now in the position of formulating th&h iterate
t{V(x) of the ATM in a closed analytical expression: 0.2 ‘
|
0.0 - . - ‘
ty" () ={x= G (1))} Sy(I (X)) + 5[ 1+ (= 1)""]. 00 02 04 06 08
(28) X

FIG. 4. The eighth iterate of the conjugatéx) =sir?(mx/2) of
Inserting Eqs(26) and(27) into the above expression yields the ATM for p=0.9 calculated through E¢31).
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IV. CONCLUSIONS combination of conjugating functions, scale transformations,
and cutoff operations.

We have presented analytical solutions to the chaotic and The key to the construction of the analytical solutions
ergodic dynamics of two classes of noninvertible singleis the complex superposition of modes connected with
humped maps: the conjugates of the symmetric as well athe monotonicity intervals of theth iterate of the dynamical
asymmetric tent map. With the exception of the iterates oSystem. We conjecture that this holds also for the general
the logistic map this is, to our knowledge, the first time thatcase of arbitrary single humped maps and might be a
closed analytical representations of chaotic trajectories arBint towards the construction of their solutions. The bound-
derived. This enables us to calculate exact physical quantRries of the monotonicity intervals are then given by the
ties, such as the time correlation function, even in thos@'€images of the maximum of the dynamical law.
cases for which nume_ncal trajectory calculations fail to pre- ACKNOWLEDGMENT
dict the correct long time behavior. The complex stretching
and folding process of the iteration of the dynamical system One of the authorgF.K.D.) gratefully acknowledges fi-
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